光片成像技术Lightsheet fluorescence microscopy在生命科学的应用

课程语言:中文
课程类型:免费课程,登录后可观看
讲者类型:徕卡内部员工讲师
内容领域:非医疗

发布日期:2022年10月 录制日期: 2022年09月 观看量:645

相关主题

光片成像技术Lightsheet fluorescence microscopy在生命科学的应用

对生物样品进行快速可靠的原位成像以揭示复杂的多细胞生物相关的动态过程一直都是光学成像的一大目标。

激光共聚焦显微镜因其优异的光学层切能力广泛应用于追踪复杂的细胞活动。但在大样本及活样品(如斑马鱼、植物等)成像中,我们需要更快速度、更低光毒性、更少漂白的成像技术。2014年《Nature Methods》评选的年度技术——光片技术就很好地满足这一需求,同时还保有优异的空间分辨率。

光片(lightsheet)技术简单来说就是使用一薄层光束从侧面激发荧光样品,随后从样本的上部或下部检测所产生的荧光信号,即检测方向与照射方向相垂直。该技术能够以很高的三维分辨率对不同大小的固定样品或活样品进行三维成像,快速地捕捉细胞或亚细胞水平上的动态变化。其高速、低毒性、低漂白等优势使得光片技术在生命科学领域开始流行起来,特别是在植物及斑马鱼等模式生物的快速动态观察和发育过程追踪、3D细胞球及类器官的观察、透明化样品的高速高质量成像等研究中受到越来越多的关注。

本视频将着重介绍光片成像技术特点和常见应用。


作者介绍

{{author.name}}

讲者视频内容说明

* 该内容属于该讲师在职期间以徕卡显微系统公司员工身份,在徕卡显微系统公司出资举办/承办/赞助的线上/线下会议上做出的知识分享;

* 徕卡显微系统公司对该内容拥有著作权等相关权力。任何组织或个人,未经徕卡显微系统公司书面授权,严禁转载相关内容;

* 本页面中的讲师介绍基于该知识分享课程制作时的信息。随着讲师个人职业发展,相关讲师履历可能会有变化;

* 本课程中对相关技术、产品的描述内容仅指课程录制时的状态。随着技术的进步、产品的选代,相关描述可能不再适用于当下。如有疑问,可咨询徕卡显微系统官方客服热线。

* 该内容属于该讲师以外部嘉宾身份,接受徕卡显微系统公司的邀请,在徕卡显微系统公司出资举办/承办/赞助的线上/线下会议上做出的知识分享;

* 该内容由徕卡显微系统公司录制整理,用于相关领域的专家、学者、学生进行学习交流。但进师的表述均不代表徕卡显微系统公司的观点;

* 任何组织或个人,未经原作者讲师的书面授权,严禁转载相关内容;

* 本页面中的讲师介绍基于该知识分享课程制作时的信息。随着讲师个人职业发展,相关讲师履历可能会有变化;

相关产品

STELLARIS DIVE多光子共聚焦显微镜

多光子共聚焦显微镜 STELLARIS DIVE STELLARIS DIVE(Deep In Vivo Explorer)是一款检测光谱可调的的多光子共聚焦显微镜。 STELLARIS DIVE让您可自由调节检测光谱: STELLARIS 8 DIVE配备可调光谱非退扫描探测系统4Tune,为您提供无限的灵活性,并使您能够开展新的多色体内深度成像实验。 STELLARIS DIVE多光子共聚焦显微镜优化成像的穿透深度和对比度: 新型可变扩束镜可进行调节,将穿透深度增加1毫米以上,并同步提高分辨率。 使多色体内深度成像达到更高对比度和深度。 STELLARIS 8 DIVE为您带来理想实验结果!

STELLARIS FALCON荧光寿命成像共聚焦显微镜

STELLARIS FALCON(FAst Lifetime CONtrast,快速寿命对比)荧光寿命成像共聚焦显微镜是功能成像的未来发展方向。 利用荧光寿命成像的强大性能来研究细胞生理学并探索活细胞动力学。 STELLARIS FALCON 是一款完全整合的荧光寿命成像 (FLIM) 解决方案,以视频速率进行荧光寿命成像来研究活细胞的快速动力学。 STELLARIS FALCON 为您的成像增加了一个新的对比维度,实现生物传感以及跟踪蛋白质之间的相互作用。 现在,荧光寿命成像信息可用于STELLARIS 系统的所有模块 您现在可以: 通过 FLIM-FRET(荧光共振能量转移)跟踪分子间的快速相互作用。 使用生物传感器检测代谢状态和微环境的变化 通过寿命对比区分多个荧光团 经过简单的培训即可获得荧光寿命成像数据

STELLARIS共聚焦显微镜平台

共聚焦显微镜平台 STELLARIS 要发表前沿的研究成果,您需要看到更多细节,尝试新的应用,能够收集到可靠的数据。 我们的使命是成为您在显微镜领域的合作伙伴,助您在科学研究中不断进步。 我们重新打造了共聚焦显微镜,推出了STELLARIS共聚焦平台,让您臻于真像。

徕卡显微镜软件LAS X软件平台

显微镜软件 徕卡显微系统的成像软件与显微镜、数码摄像头以及配件组成完整的成像解决方案。易于使用和直观的用户界面,指导您完成工作流程的每一步,实现快速图像采集或者复杂的专业级分析。

THUNDER Imager Model Organism全自动宏观显微成像系统

徕卡全自动宏观显微成像系统(THUNDER Imager Model Organism)可在发育或分子生物学研究中对整个生物机体进行THUNDER Imager Model Organism 可在发育或分子生物学研究中对整个生物机体进行 3D 探索。得益于 Computational Clearing,您的图像可揭示最为细微的结构。不再有离焦模糊的困扰,并保有徕卡体视显微镜典型的易用性。 THUNDER Imager Model Organism 是研究果蝇、线虫、斑马鱼、植物和小鼠等生物的理想仪器。样品筛选、定位和成像,一台设备足矣。简化您的工作流程,对模式生物进行从总体概览到最细微结构的研究。 3D 探索。得益于 Computational Clearing,您的图像可揭示最为细微的结构。不再有离焦模糊的困扰,并保有徕卡体视显微镜典型的易用性。

THUNDER EM Cryo CLEM 成像系统

THUNDER EM Cryo CLEM成像系统是一款采用THUNDER技术光电联用的冷冻光学显微镜。 它提供了成功进行结构生物学实验研究所需的成像数据和安全冷冻条件。 通过高分辨率、实时去除焦外模糊信号的THUNDER技术成像,从而精确识别感兴趣的细胞结构,然后将样本无缝传送到电子显微镜。

THUNDER Imager 3D Live Cell3D活细胞培养显微成像系统

活细胞培养显微成像系统 采用徕卡创新的 Computational Clearing 技术, 能够实时有效去除非焦平面的模糊信息,使 3D 样品在基于摄像头的荧光显微镜上依然能高质量地采图。系统的高度灵敏度可确保低光毒性和低淬灭,全面优化条件以实现更高的图像质量。 活细胞培养显微成像系统可为您提供适用于先进 3D 细胞培养试验的解决方案,无论您想要研究的是干细胞、球状细胞团或是类器官。

THUNDER Imager Tissue全景组织显微成像系统

全景组织显微成像系统可对通常用于神经系统科学和组织学研究中的 3D 组织切片进行实时荧光成像。为厚组织摄取丰富详尽且无离焦模糊的清晰图像。 得益于徕卡的创新技术 Computational Clearing,即使是组织深处的细微结构也能解析。对脑切片中的神经元轴突和树突等详细形态结构进行成像。即使是厚组织切片,也能实现高画质,并同时具备宽场显微镜声名远扬的速度、荧光效率和易用性。

相关应用

徕卡显微镜在生物荧光的应用

徕卡显微系统荧光显微镜——守住光明! 荧光是生物和分析显微镜中最常用的物理现象之一,主要是因为它具有灵敏度高、特异性强的特点。荧光是冷发光的一种形式。 荧光显微镜甚至允许用户决定单个分子种类的分布、数量及其在细胞内的位置。可以实现共区域化和相互作用的研究,离子浓度以及观察细胞内间的胞吞和胞吐过程。 借助超分辨率荧光显微镜,甚至可以成像亚分辨率结构。 请前往Science Lab阅读更多关于荧光显微镜、定量荧光技术和超高分辨率显微技术的文章。

显微镜在细胞生物学研究中的应用

细胞生物学研究 如果您的研究重点是探究人类健康和疾病相关的细胞学基础,那么从时空和分子层面详细研究感兴趣的细胞至关重要。 因此,显微成像是细胞生物学中一个非常重要的工具,它让您能够在样本的结构环境中详细研究样本,也可以分析细胞器和大分子。 细胞生物学成像是运用一系列的光学显微镜和电子显微镜完成的。 徕卡显微系统公司推出的成像解决方案专为扩展您的细胞生物学研究而设计。

模式生物研究

模式生物是研究人员用来研究特定生物学过程的物种。 它们具有与人类相似的遗传特征,通常用于遗传学、发育生物学和神经科学等研究领域。 选择模式生物的原因通常是它们在实验室环境中易于保持和繁殖、生成周期短,或能够产生突变体来研究某些性状或疾病。

类器官和 3D 细胞培养

生命科学研究中最令人振奋的最新进展之一是 3D 细胞培养系统的发展,例如类器官、球状体或器官芯片模型。 3D 细胞培养物是一种人工环境,在这种环境中,细胞能够在三维空间中生长并与周围环境相互作用。 这些环境条件与它们在体内的情况相似。 类器官是一种 3D 细胞培养物,包含器官特异性细胞类型,可以表现出器官的空间组织和复制器官的某些功能。 类器官重现了一个生理上高度相关的系统,使研究人员能够研究复杂的多维度问题,例如疾病发作、组织再生和器官之间的相互作用。

斑马鱼研究用哪种显微镜

您是否努力想要看清斑马鱼中细微的色素和结构差异?正确识别表型至关重要,而且要求非常苛刻。一眼即可看到更多细节 – 徕卡斑马鱼筛选解决方案可帮助您即使在较低的放大倍率下,依旧可以辨识出细微的结构。这意味着,您将清楚地认识神经系统、心脏、血管和色素形成。

活细胞成像

使用现在已开发的各种荧光蛋白和多色探针几乎可以标记任何分子。 对囊泡、细胞器、细胞和组织中的蛋白质动力学成像的能力为了解细胞在健康和疾病状态下如何工作提供了新的洞察力。 这些包括有丝分裂、胚胎发育和细胞骨架变化等过程的时空动态。 研究活细胞时,常见的障碍包括光毒性和光损伤。 要捕捉快速的生物过程,关键是保持细胞健康并获得清晰的图像,确保数据可靠、无伪影。 活‐细胞显微成像通常需要在图像质量与细胞健康之间作出取舍。 在成像过程中必须保持特定的环境条件,以免细胞发生变化。
wechat
欢迎扫码关注徕卡官方微信,更多显微技巧,行业资讯尽在掌握
close