THUNDER Imager Model Organism全自动宏观显微成像系统

THUNDER Imager Model Organism 显微镜成像系统可在发育或分子生物学研究中对整个生物机体进行 3D 探索。得益于 Computational Clearing,您的图像可揭示最为细微的结构。不再有离焦模糊的困扰,并保有徕卡体视显微镜典型的易用性。

徕卡显微系统官方客服收到您的信息后,将委派徕卡销售工程师或徕卡官方渠道授权经销商为您提供产品准确报价。

THUNDER Imager Model Organism 显微镜成像系统是研究果蝇、线虫、斑马鱼、植物和小鼠等生物的理想仪器。样品筛选、定位和成像,一台设备足矣。简化您的工作流程,对模式生物进行从总体概览到最细微结构的研究。

将为您的研究带来以下优势:

  • 快速摄取显示细微结构的清晰图像,即使深入厚生物体也不例外
  • 在成像期间,甚至能将大型模式生物保持在理想的生理条件下
  • 简化生物体的处理,实现更加高效的成像和分析流程

*依据 ISO/IEC 2382:2015



展示细微结构的清晰图像

最大程度地从宝贵的模式生物中获取信息,获知惊人的细节。充分利用 THUNDER Imager Model Organism 与常规体视显微镜相比发生飞跃的图像质量。有了 THUNDER,无关背景得以去除,感兴趣的细节得以保留。

在以下应用中,更快获得更有重要意义的结果:

  • 模式生物转基因株系表征
  • 模式生物的实时细节观察
  • 神经元网络的发育研究


配备 1x Plan APO 物镜的 THUNDER Imager Model Organsim,变倍比 11:1,18 层 Z 轴层切扫描,z 深度约 300 um。绿色 (kdrl:GFP) 代表血管生成,红色 (GATA1:dsRed) 代表红细胞和血小板。 图像特别感谢:德国巴德瑙海姆 (Bad Nauheim),马克斯·普朗克心肺研究所,Almary Guerra 博士和 Didier Stainier 博士

在理想的生理条件下对大型模式生物进行成像

实现“鱼肉与熊掌兼得”:THUNDER Imager Model Organism 显微镜成像系统为厚样品将大视场和高画质相结合,到目前为止,只有光学切片法能做到这一点。这种强大的结进行合让您能够在理想的生理条件下观察到大型活体样品, 无需对生物体镇静处理。

深入洞察更多信息,更好地了解调查中的现象。得益于出色的光学器件和离焦信号去除功能,可对整条鱼进行 z-扫描。快速获得结果,因为每个 z 平面只需要一张图像。

通过 THUNDER Imager Model Organism,可在具有适当背景的大视场下观察相关细节。运用 Instant Computational Clearing,可快速摄取 z-堆栈图像,并使用高度灵敏的摄像头在生理条件下进行检测。

叠加图像:在这只 E12-14 小鼠 (原株样品) 中,神经丝被染为红色,以评估神经元的分支。小鼠使用 ScaleS 试剂进行透明处理。样品特别感谢:法国细胞生物学研究所 (IGBMC) 成像中心,Yves Lutz。


探索新领域

THUNDER Imager Model Organism 全自动显微镜成像系统,有助于简化活体模式生物特定细节的筛选和记录。动态的活体生物体可在培养皿或多孔板中直接成像。使用选配的 2x 带校正环的物镜,您可以清晰地观察到水中的样品。无需取出样品或进行切片。直接就能获得有意义的数据。

模式生物的 Time-lapse 时间间隔摄取研究对于发育、移动和反应观察十分重要。使用 THUNDER,您可在摄像头的速度下实时获得细节经过高度解析的图像。


助您实现深入了解的 THUNDER Imager

充分利用体视显微镜典型的大工作距离优势。THUNDER Imager Model Organism 可以进行从前无法做到的 Z 轴层切扫描。直接观察培养皿中的大型类器官以及透明或非透明的小鼠器官。您的结果将非常宝贵,令人印象深刻。

叠加图像:封固在凹玻片上直径约 150 µm 的类器官。分别通过使用高分辨率物镜 (FluoCombi III) 的体视显微镜 [左] 和 THUNDER Imager Model Organism (右) 成像。THUNDER Imager system 可呈现分辨率更高、更锐利的图像。


3 种专用配置

THUNDER Imager Model Organism 可提供 3 种专用配置:

  1. 针对大视场优化。配有 2000 万像素数字摄像头和 THUNDER 3D 工作站,实现图像处理能力最大化。
  2. 经过优化甚至可捕捉到最微弱的信号。配备技术先进的 sCMOS 黑白摄像头,还有处理能力最大化的 THUNDER 3D 工作站。
  3. 经过优化,可研究快速的细胞内过程,并具备 Instant Computational Clearing (ICC) 能力。配有技术先进的 sCMOS 摄像头。


THUNDER M205FA - THUNDER全自动高分辨宏观成像系统3D演示模型

  • 3D模型文件较大,加载速度与您当前的网络环境相关,请耐心等待加载完成
  • 因生产批次和模块配置差异,模型和真机可能存在细节差异
  • 如需获得更加逼真的3D体验,可使用微信扫描下方二维码,关注“徕卡显微系统”官方微信,点击底部菜单徕卡学院>线上体验中心,即可进入徕卡虚拟体验中心小程序

RELATED PRODUCTS
相关产品
如果每位科研人员都可以实现空间信息的获取? 迈入多模态显微成像分析时代 认识 Mica世界上第一款多模态显微成像分析中枢
使用超多标组织成像分析整体解决方案加深您对组织微环境的理解 癌症十分复杂。 免疫疗法虽然很有发展前景,但目前有效性仍只有 30%。 研究人员需要更深入地了解正常组织和病变组织的细胞结构,以开发更好的治疗方法,更准确地预测疾病进展。 多标或者超多标成像是清晰地观察、识别和量化重要生物标志物的最新技术。 研究层面从回答“是否为癌症?”的问题到能够根据细胞类型、生物标志物特点和个体特征将肿瘤分层。
全景组织显微成像系统可对通常用于神经系统科学和组织学研究中的 3D 组织切片进行实时荧光成像。为厚组织摄取丰富详尽且无离焦模糊的清晰图像。 得益于徕卡的创新技术 Computational Clearing,即使是组织深处的细微结构也能解析。对脑切片中的神经元轴突和树突等详细形态结构进行成像。即使是厚组织切片,也能实现高画质,并同时具备宽场显微镜声名远扬的速度、荧光效率和易用性。
活细胞培养显微成像系统 采用徕卡创新的 Computational Clearing 技术, 能够实时有效去除非焦平面的模糊信息,使 3D 样品在基于摄像头的荧光显微镜上依然能高质量地采图。系统的高度灵敏度可确保低光毒性和低淬灭,全面优化条件以实现更高的图像质量。 活细胞培养显微成像系统可为您提供适用于先进 3D 细胞培养试验的解决方案,无论您想要研究的是干细胞、球状细胞团或是类器官。
RELATED DATA
相关资料
2024年07月03日 17:22
肿瘤的发展与肿瘤微环境息息相关。在癌症发生中,正常组织中和谐的细胞相互作用关系被破坏,逐渐演变成适应肿瘤生长的条件。肿瘤微环境的变化,可能导致不同细胞区室的基因、蛋白表达及信号通路的改变。针对肿瘤微环境的检测和表征研究可为癌症治疗提供新的思路。
2024年06月12日 16:49
空间生物学背景介绍 空间生物学(Spatial Biology)是一门涉及生物组织内细胞和结构的空间排布以及它们在三维空间中相互关系和相互作用的学科。这种研究方法探索了细胞和组织在空间中的布局、分布和相互联系,以揭示生物体内的复杂生物过程和功能。
2024年05月21日 16:38
徕卡显微系统精准空间生物学解决方案提供从样本取材,到H&E明场成像、多色荧光成像、超多色荧光成像到图像分析,再带激光显微切割技术链接下游的精确分析技术(如质谱等),从整体到微观,覆盖基因组、蛋白组和代谢组领域,解析生物的结构、功能和疾病。
2024年05月21日 14:28
成像 → 分析 → 切割一体化解决方案 从高分辨率成像,到高精准分析,再到高精确切割,赋能您的多组学研究
RELATED TECHNOLOGY
相关技术前沿
2024年07月05日 15:55
Aivia 采用先进的基于人工智能的软件架构,构建了一个二维至五维的图像可视化、分析与数据诠释的完整平台,能够在短短几分钟内可靠地处理和重建高度复杂的图像。分析的主观性和不易重复性是生物图像分析中需要克服的关键障碍。标准分割方法会导致不符合标准的结果,因此需要进行大量的人工干预,而这很容易出错。Aivia改变了这一切,Aivia13赋能研究者挖掘空间组学洞见。
2024年06月24日 15:57
空间生物学(Spatial Biology)是一门涉及生物组织内细胞和结构的空间排布以及它们在三维空间中相互关系和相互作用的学科。这种研究方法探索了细胞和组织在空间中的布局、分布和相互联系,以揭示生物体内的复杂生物过程和功能。
2024年06月14日 17:24
THUNDER技术采用硬件加软件的整体解决方案,在宽场成像原理下,通过计算清除(Computational Clearing)和自适应反卷积(Adaptive Deconvolution)的专利方法,有效的减少离焦信号的干扰,保留焦平面的信号,从而提高对比度,改善图像质量并提供更多细节信息供进一步分析。XY轴分辨率能达到136nm,Z轴分辨率能达到264nm,是一种广泛受到学术界认可的宽场高分辨率成像技术。
2024年06月12日 17:33
本研究表明,发育因子TBX3的蛋白抑制再激活,解释了BRAF/ mapk介导的去分化和肿瘤发生。在胚胎发育过程中,BRAF/MAPK上调USP15以稳定TBX3, TBX3通过抑制分化来协调器官发生。Usp15 - tbx3轴在肿瘤发生过程中被重新激活,Usp15敲除以tbx3依赖的方式阻止BRAFV600E驱动的肿瘤发展。删除Tbx3或Usp15会导致肿瘤再分化,这与它们在发育过程中的过度分化倾向相似,例如甲状腺滤泡发生中断和分化因子如Tpo、Nis、Tg升高。研究结果表明,USP15和TBX3均与BRAFV600E特征和肿瘤预后不良高度相关。因此,USP15稳定的TBX3代表了BRAF/ mapk导向的发育稳态和病理转化下游的关键蛋白抑制机制,支持肿瘤发生主要依赖于通过胚胎调控程序重新启动实现的上皮去分化。
RELATED ONLINE CLASSROOM
相关网络课堂
2024年02月28日 17:49

徕卡显微系统联合转化医学网举办《空间组学技术在疾病研究中的创新应用》网络研讨会,报告分享精彩纷呈:

《CST免疫荧光(IF) 实验在神经退行性疾病中的前沿研究策略》——姜南 CST售前科学家

《基于显微成像的空间组学技术在疾病研究中的应用》——刘继红 徕卡显微资深应用专家

《运用单细胞分辨率水平的空间组学策略深入研究肿瘤微环境》——王 楠 非因生物首席技术官

wechat
欢迎扫码关注徕卡官方微信,更多显微技巧,行业资讯尽在掌握
close