活细胞成像

使用现在已开发的各种荧光蛋白和多色探针几乎可以标记任何分子。 对囊泡、细胞器、细胞和组织中的蛋白质动力学成像的能力为了解细胞在健康和疾病状态下如何工作提供了新的洞察力。 这些包括有丝分裂、胚胎发育和细胞骨架变化等过程的时空动态。

研究活细胞时,常见的障碍包括光毒性和光损伤。 要捕捉快速的生物过程,关键是保持细胞健康并获得清晰的图像,确保数据可靠、无伪影。 活细胞显微成像通常需要在图像质量与细胞健康之间作出取舍。 在成像过程中必须保持特定的环境条件,以免细胞发生变化。

各种高性能的徕卡成像解决方案可以克服活细胞成像的这些挑战,有助发现细胞生理学和动力学方面的新信息。

徕卡显微系统官方客服收到您的信息后,将根据您的需求委派徕卡销售/服务工程师按您提交的联系方式与您联系、为您解答问题、发送您需要的资料文件到您指定的邮箱。

成像过程中的细胞活性和动力学

徕卡显微系统为您提供活细胞成像方面的智能创新。 我们的解决方案可帮助您获得最佳的图像质量,同时保护好您的样本。

大多数细胞过程在三维空间中随着时间的推移进行。 因此,若要掌握全面的情况,必须以四个维度(XYZ 和时间)对细胞成像。 延时‐成像方法可捕捉从几秒到几个月内的细胞事件。 也可以在特定时间点对细胞重复成像。 为了在这个过程中保护细胞活性,活细胞成像时需要温度、酸碱度和湿度都受到控制。 曝光量也应在最低限度,以免发生光毒性。

徕卡显微系统提供的成像解决方案有助于优化您对活细胞的研究,即使是长时间的研究也同样如此。 它们能提供必要的图像对比度和分辨率,有助动态事件的分析。 一些徕卡成像系统还能实现高速成像,因此不会错过任何关键的细胞事件。


Live cell imaging system DMi8
THUNDER Imager Live Cell

您的活细胞成像需求

要想成功地进行活细胞成像实验,使用合适的平台至关重要。 在选择用于活细胞成像的光学显微镜时,应考虑以下3个变量:检测器灵敏度(信噪比)、样本活性和图像采集速度。

适合活细胞应用的方法能够在不损伤细胞的情况下对动态事件成像,因为细胞损伤会影响结果。

活细胞成像主要使用荧光显微镜进行。 宽场显微镜可灵活激发和快速采集,通常用于对细胞动态和发育进行长时间成像。 共聚焦显微镜通常用于研究亚细胞动态事件。 多光子显微镜可使用较长波长的光激发,可减少光漂白并延长细胞活性。 最后,荧光寿命成像 (FLIM) 可用于研究细胞中的快速动态信号事件。

徕卡显微系统的 THUNDER 成像系统、STELLARIS 共聚焦平台和 FLIM 提供了最新的宽场和共聚焦成像创新技术,可快速进行 3D 活细胞成像。


关于活细胞成像

除了细胞或器官的结构组织,细胞动态过程是一个功能生物实体的主要贡献者。当然,这些过程可以在活细胞中通过非侵入性技术如光学方法观察到,统称为“活细胞成像”方法。活细胞成像涵盖了所有用显微镜观察活细胞的技术——从用体视显微镜观察胚胎发生,到用复合显微镜研究细胞生长,直到用荧光染料或荧光蛋白研究细胞的生理状态或细胞运输。尽管对实验人员和设备(如成像系统,温度、CO2浓度控制)都要求很高,但活细胞成像技术提供的结果是当今研究不可或缺的。

视频:神奇的细胞世界

RELATED PRODUCTS
相关产品
全景组织显微成像系统可对通常用于神经系统科学和组织学研究中的 3D 组织切片进行实时荧光成像。为厚组织摄取丰富详尽且无离焦模糊的清晰图像。 得益于徕卡的创新技术 Computational Clearing,即使是组织深处的细微结构也能解析。对脑切片中的神经元轴突和树突等详细形态结构进行成像。即使是厚组织切片,也能实现高画质,并同时具备宽场显微镜声名远扬的速度、荧光效率和易用性。
活细胞培养显微成像系统 采用徕卡创新的 Computational Clearing 技术, 能够实时有效去除非焦平面的模糊信息,使 3D 样品在基于摄像头的荧光显微镜上依然能高质量地采图。系统的高度灵敏度可确保低光毒性和低淬灭,全面优化条件以实现更高的图像质量。 活细胞培养显微成像系统可为您提供适用于先进 3D 细胞培养试验的解决方案,无论您想要研究的是干细胞、球状细胞团或是类器官。
徕卡全自动宏观显微成像系统(THUNDER Imager Model Organism)可在发育或分子生物学研究中对整个生物机体进行THUNDER Imager Model Organism 可在发育或分子生物学研究中对整个生物机体进行 3D 探索。得益于 Computational Clearing,您的图像可揭示最为细微的结构。不再有离焦模糊的困扰,并保有徕卡体视显微镜典型的易用性。 THUNDER Imager Model Organism 是研究果蝇、线虫、斑马鱼、植物和小鼠等生物的理想仪器。样品筛选、定位和成像,一台设备足矣。简化您的工作流程,对模式生物进行从总体概览到最细微结构的研究。 3D 探索。得益于 Computational Clearing,您的图像可揭示最为细微的结构。不再有离焦模糊的困扰,并保有徕卡体视显微镜典型的易用性。
RELATED DATA
相关资料
2024年04月19日 15:35
在本电子书中,您将了解3D细胞培养模型(如类器官和细胞球)成像的关键注意事项。探索创新型显微镜解决方案,来实时记录类器官和细胞球的动态成像过程。通过深入的案例研究,我们展示了这些解决方案如何帮助科学家在再生医学、药物研发和疾病研究等领域取得新进展。
2024年04月19日 10:08
本报告描述了利用全自动连续切片方案通过序列断层成像对高分辨率三维亚细胞结构分析进行优化,在基底上实现高切片密度。 序列断层成像(AT)是生物标本的三维图像重建技术。它包括利用扫描电子显微镜(SEM)对超薄连续切片的有序阵列进行成像,并能对生物结构进行高分辨率、定量分析。序列断层成像比传统共焦显微镜具有更高的空间分辨率。该方法可以揭示细胞和蛋白质结构的其他信息,明确了解不足或尚未解析的特征。
2024年03月18日 17:51
THUNDER Imager通过计算清除技术消除了三维样本中出现的离焦模糊信号,现在您可以直接在实时预览中通过THUNDER技术挑选感兴趣的区域。它允许您实时清晰地查看完整样本内部的细节,而不会受到离焦模糊信号的干扰。您仍然可以享受到宽场显微镜的成像速度、高灵敏度和易用性。
2024年03月18日 17:05
THUNDER Imagers通过计算清除技术消除了二维与三维样本产生的离焦模糊信号,现在您可以直接在实时预览中通过THUNDER技术挑选感兴趣的区域。它允许您实时清晰地查看完整样本内部的细节,而不会受到离焦模糊信号的干扰。您仍然可以受益于宽场显微镜的灵敏度、易用性和高速成像。
2024年03月18日 15:47
在生命科学研究中,活细胞成像是一种不可或缺的工具,可用于观察细胞的活体状态。 这本电子书回顾了为确保成功进行活细胞成像而需要考虑的各种重要因素。
2024年03月07日 10:04
LIGHTNING和TauSense如何提高聚焦离子束(FIB)加工的定位精度 LIGHTNING超分辨率检测和TauSense技术能够获得更好的低温荧光成像,促进了低温光电联用工作流程。 荧光显微镜图像能够为cryo-FIB加工提供定位支持,其质量决定了所制备薄片的结果。本文描述了LIGHTNING技术是如何显著提高图像质量,以及如何利用该技术基于荧光寿命的信息来辨别样品的不同结构。
2024年02月26日 17:22
亚细胞结构内大分子研究 为了全面研究复杂的生物学机制,生命科学研究人员需要在亚细胞结构环境下研究可靠的大分子结构信息。为了实现这一点,必须做到以亚纳米级分辨率精确解析目标大分子和它们的细胞环境。 徕卡微系统公司和赛默飞世尔科技公司合作创建了完全集成的低温电子断层成像工作流程,以满足这些研究需求。仪器之间的安全采样和数据传输,使轻松导航到细胞目标区域和亚纳米分辨率的可靠成像得到保障。
2024年02月26日 11:11
PAULA不仅仅能够用于细胞成像,更为您提供贴心的细胞管理。 作为新型数字化细胞成像设备,PAULA能够帮助您轻松完成常规细胞检查。实现实验结果的标准化,改善下游实验流程。
2024年02月26日 09:44
徕卡MICA全场景显微成像分析平台:观察样本所需的一切都集中在一个易于使用的系统中。4倍数据信息,100%相关性。通过时空相关性获取关键信息。
2024年02月23日 17:35
MICA不仅仅是一台高度自动化的显微镜,它还在密闭箱式的培养环境中将宽场和共聚焦成像结合在一起。只需按一下按钮,您就可以智能化设置实验参数,改进荧光显微成像的工作流程,更快地获得科学结果,这些全都是在一个工作站上就可以完成。MICA可以让科学家更关注实验本身,引导科学家们轻松实现实验目的。它就像是航空中枢一样,将乘客聚集在一起,引导他们前往各自的目的地。
2024年02月23日 15:26
借助Cell DIVET™超多标成像解决方案和开放式样品架无盖载玻片的设计,您将能够准确选择如何设计和执行多重免疫荧光成像实验。 >使用经验证的Cell DIVE重复染色方案,可以自由搭配第三方多重成像试剂盒或免疫荧光成像试剂盒利用兼容手动和自动染色技术的开放式样品架,根据研究进展随时调整工作流程 >无盖载玻片的工作流程可以保护组织进行多轮染色与成像,从而根据研究课题的需要,对尽可能多的生物标志物进行成像
2022年09月08日 15:04
为了全面研究复杂的生物学机制,生命科学研究人员需要在亚细胞结构环境下研究可靠的大分子结构信息。为了实现这一点,必须做到以亚纳米级分辨率精确解析目标大分子和它们的细胞环境。 徕卡微系统公司和赛默飞世尔科技公司合作创建了完全集成的低温电子断层成像工作流程,以满足这些研究需求。 仪器之间的安全采样和数据传输,使轻松导航到细胞目标区域和亚纳米分辨率的可靠成像得到保障。
2022年09月08日 14:57
CORAL CRYO-获取重要信息 >精确:在原本环境中轻松观察三维目标结构。 >卓著:享受STELLARIS共焦平台的优越成像性能。 >高效:利用无缝工作流程提高实验效率,简化培训工作。
2022年03月08日 16:37
徕卡MICA多模态显微成像分析中枢技术参数 Mica – the World’s first Microhub Technical Documentation | March 2022
2022年02月23日 10:05
Aivia为显微成像工作者和研究人员提供高性能的图像处理和可视化工具,协助其从图像中提取更多信息。 Aivia采用先进的AI-first软件架构,提供二维至到五维图像可视化、分析和解读平台,可在几分钟内可靠地处理和重建高度复杂的图像。 > 使所有用户都可以进行AI图像分析⸺无需计算机科学专业知识 > 利用机器学习生成可靠且可重复的分割结果 > 实现功能强大且快速的2-5D可视化和分析,在单一平台内寻找发现数据的所有价值 Aivia的AI工具可简化图像分析中的主要步骤,并可为您的实验室提供根据 数据量身定制的解决方案。
2022年02月23日 09:45
徕卡Cell DIVE 超多标组织成像分析整体解决方案是基于抗体标记的超多标技术,用于研究肿瘤微环境中的空间细胞生物学和功能。
2021年05月17日 15:54
徕卡Cell DIVE是一款超多标组织成像分析系统,能够深度挖掘组织微环境的空间位置信息,从而完成精准的可视化定量分析,助力肿瘤免疫治疗研究。其特点包括: ● 可在一张组织切片上对超过60个Biomarker进行成像和分析 ● 可适配400 多种经严格验证的市售抗体 ● 拥有专利的操作流程:漂白过程不会损伤样品(第一个专利于2009年获得) 应用领域: 免疫微环境分析和空间分析 肿瘤研究和信号通路研究 肿瘤和组织微环境研究 肿瘤和组织异质性研究 肿瘤诊断(例如cliarient实验室开发的霍奇金淋巴瘤诊断(LTD)) 神经学研究 组织结构研究
RELATED ONLINE WEBINARS
网络课堂
2024年02月29日 09:51

徕卡显微系统应用工程师游换阳于“第六届细胞分析网络会议 ”网络研讨会上分享报告《第六届细胞分析网络会议 )——针对类器官成像复杂性,Leica提供全流程需要的设备,从类器官获取,日常培养观察,高清宽场和共聚焦成像再到最后的人工智能大数据分析,徕卡提供全流程成像分析解决方案,助力类器官科研。

2024年02月28日 17:05

本课程来源于徕卡与仪器信息网联合举办的《2023空间生物学主题网络会议》,介绍了高清晰全组织显微成像、AI结构和细胞识别、单细胞精确取样、质谱分析等全流程方案。

2024年02月28日 16:51

本课程来源于徕卡与仪器信息网联合举办的《2023空间生物学主题网络会议》,简介如下:

传统单光子共聚焦已作为实验室成像标配利器而被广泛使用。而双光子共聚焦相较于单光子有穿透深度更深,光毒性低等优势而更多的用于深层组织及在体成像中。在传统双光子的基础上,徕卡新一代STELLARIS 8 DIVE开辟了更自由的光谱及多维成像模式,结合最新的人工智能分析软件Aivia,为您打造更强大的多维空间深层成像新一站式解决方案。

2023年08月18日 17:15

本课程来源于《中药质量控制与分析》网络研讨会,徕卡报告简介如下:

从中药植株的有效区域切割提取到药物作用后表型筛选,以及中药应用于细胞、类器官或模式动物的临床前实验相关成像解决方案。


2023年08月18日 16:36

2009年荷兰科学家使用徕卡显微镜拍摄了成体干细胞来源的类器官的宽场和激光共聚焦图片。2011年伯桢生物创始人团队在清华大学重现了类器官技术,十年磨一剑于2021年创立伯桢生物,利用全球领先的类器官模型构建能力推动医药创新。在类器官模型技术快速增长和广大用户的迫切需求下,徕卡显微的类器官成像解决方案和伯桢生物类器官培养方案将携手建立多维成像平台,带大家进入类器官技术的新纪元。

2023年08月18日 16:31

本次课程来源于分析测试百科网联合徕卡举办的网络会议《类器官技术在肿瘤研究中的应用与展望》,简介如下:

如何实现类器官稳定培养和低光毒性连续成像,如何在一台设备上实现类器官长时间培养和原位共聚焦高分辨采集,如何评价类器官不同细胞分化潜力和细胞的代谢活性,类器官是否能无标记成像,采集数据如何快速分割分析;徕卡带您了解最新的显微成像技术及人工智能分析平台在类器官研究中的应用。


2023年08月18日 15:32

为帮助相关领域的用户了解生物成像前沿技术及应用进展,仪器信息网将于2023年04月18日举办“生物成像技术在肿瘤诊断与治疗中的应用”主题网络研讨会,本届网络研讨会为期1天,徕卡受邀带来精彩报告《肿瘤诊断与治疗中的免疫荧光显微成像》。

本次课程简介:癌症由于其高发性和高死亡率是当今医学领域研究的重中之重。随着科学技术的不断发展,从原来的病理诊断,通过HE染色,显微成像进行肿瘤诊断,逐步发展到荧光成像。荧光素的标记,让我们可以通过区分开更多的生物标志物,来进行更加精准的诊断,研究个性化的免疫疗法。


2023年08月18日 15:11

随着科学技术的不断发展,显微镜的应用领域与场景越来越丰富。传统显微镜特别是一些高端的显微成像技术的使用通常要求使用者拥有一定的显微成像功底与经验,也会耗费使用者大量的时间,造成工作效率的低下,特别是交叉领域的专家学者,需要利用多种不同领域的技术来进行科学研究。Leica的MICA智能化显微成像技术,将带领科学家们走进新的智能成像时代,无需成为显微成像大使,就能获得大师级别的显微成像数据,极大的帮助科研工作者加速实验进程,提高实验效率。MICA活细胞成像,可以捕捉动态的细胞信息,通过下游的Coral life CLEM活细胞光电联用技术,迅速将活细胞的特定现象冷冻固定,转移至电镜下进行更加细节的观察,帮助我们获得更多的细胞生物学洞见。


2023年02月02日 14:24

11月23日-11月25日举办的“2022年高端光学显微成像技术研讨会暨多模态显微成像分析系统MICA发布会,我们邀请了资深的显微成像技术专家分享高端光学显微成像技术在科研中的前沿应用。本视频讲述徕卡显微系统有限公司及厦门精艺兴业科技有限公司与您一起交流,共同走进智能化的多模态成像新纪元!

2022年12月22日 17:07

细胞是生物体和生命活动的基本单位。细胞分析对于细胞结构和功能的研究、生命活动规律和本质的探索、疾病的诊断与治疗以及药物的筛选与设计等都具有十分重要的意义。近年来随着分析技术的不断提高,人们越来越意识到细胞具有个体差异性,原位细胞分析、微流控技术、细胞成像分析、单细胞分析、流式细胞技术等创新的细胞分析技术发展迅速,使得对细胞进行精确操控、识别、分离和分析成为了可能。

为加强创新细胞分析和成像技术与方法的交流,把最新技术与方法推介给广大生物医药领域用户,仪器信息网将于2022年11月24日举办“细胞分析与成像技术进展”主题网络研讨会。本届网络大会聚焦于细胞分析及成像技术的新应用与进展。

11月24日上午11:00--11:30,徕卡显微系统高级应用专员夏先园为广大观众及行业从业者带来《显微成像——探索丰富多彩的细胞微观世界》的主题报告,内容丰富精彩!


2022年12月22日 17:03

类器官(Organoids)是利用成体干细胞或多能干细胞进行体外三维培养而形成的具有一定空间结构的组织类似物,结合高超的成像技术,彻底改变了人们对培养皿中生命活动的理解方式,在人类发展和疾病机制方面为研究人员提供更多见解。

1个月前,伯桢生物携手复旦大学博士、徕卡显微镜工程师联合直播 ——「类器官成像那些事儿(上、下)」,深度解析类器官明场下拍摄技巧,类器官免疫组化免疫荧光拍摄技巧,和类器官高分辨率成像,不同组织来源类器官包埋注意事项等,收获热烈反响。

12月8日,伯桢生物将再次与我们合作,携手复旦大学博士和徕卡客户成功管理专家与各位学者共续「类器官成像那些事儿(番外篇)」。


2022年12月22日 16:46

类器官(Organoids)是利用成体干细胞或多能干细胞进行体外三维培养而形成的具有一定空间结构的组织类似物,结合高超的成像技术,彻底改变了人们对培养皿中生命活动的理解方式,在人类发展和疾病机制方面为研究人员提供更多见解。

10月20日,伯桢生物携手复旦大学博士、徕卡显微镜工程师联合直播 ——「类器官成像那些事儿(上)」,深度解析类器官明场下拍摄技巧,类器官生长状态及活性分析方法,不同组织来源类器官包埋注意点等,收获热烈反响。

本视频由伯桢生物将再次走进徕卡客户体验中心,携手复旦大学博士和徕卡显微镜工程师与各位学者共续「类器官成像那些事儿(下)」


2022年11月01日 15:57

类器官(Organoids)是利用成体干细胞或多能干细胞进行体外三维培养而形成的具有一定空间结构的组织类似物,结合高超的成像技术,彻底改变了人们对培养皿中生命活动的理解方式,在人类发展和疾病机制方面为研究人员提供更多见解。

本期视频伯桢生物“聊聊类器官”直播将走进徕卡客户体验中心,与徕卡显微镜工程师一同和大家聊聊「显微镜和类器官的那些事儿」。


2022年10月20日 16:46

对生物样品进行快速可靠的原位成像以揭示复杂的多细胞生物相关的动态过程一直都是光学成像的一大目标。

激光共聚焦显微镜因其优异的光学层切能力广泛应用于追踪复杂的细胞活动。但在大样本及活样品(如斑马鱼、植物等)成像中,我们需要更快速度、更低光毒性、更少漂白的成像技术。2014年《Nature Methods》评选的年度技术——光片技术就很好地满足这一需求,同时还保有优异的空间分辨率。

光片(lightsheet)技术简单来说就是使用一薄层光束从侧面激发荧光样品,随后从样本的上部或下部检测所产生的荧光信号,即检测方向与照射方向相垂直。该技术能够以很高的三维分辨率对不同大小的固定样品或活样品进行三维成像,快速地捕捉细胞或亚细胞水平上的动态变化。其高速、低毒性、低漂白等优势使得光片技术在生命科学领域开始流行起来,特别是在植物及斑马鱼等模式生物的快速动态观察和发育过程追踪、3D细胞球及类器官的观察、透明化样品的高速高质量成像等研究中受到越来越多的关注。

本视频将着重介绍光片成像技术特点和常见应用。


2022年08月17日 10:15

荧光寿命是荧光团在发射荧光光子返回基态之前保持其激发态的平均时间长度。这取决于荧光团的分子组成及其微环境。

FLIM将寿命测量与成像相结合:对每个图像像素以测得的荧光寿命进行颜色编码,产生额外的图像反差。因此,FLIM可以提供关于荧光分子空间分布的信息和有关其生化状态或微环境的信息。FLIM的典型应用是FLIM-FRET。FRET是研究分子相互作用的成熟技术。它能用来研究蛋白质结合并在埃的尺度上估算分子间的距离。

2022年08月17日 10:09

多模式智能显微成像技术作为袜卡2022年全新发布的成像技术,解放双手,带领大家进入智能化的成像时代,其智能化的设置,帮助新手小白,无需成为显微成像大师,即可获得大师级别的显微成像数据。多种成像模式,可实现从固定样品,到活细胞;从玻片,到多孔板;从朋场,到荧光;从常规宽场,到超高分辨共聚焦技术都可实现。先进的FluoSync技术进行多色同时成像,在降低光毒性的同时,实时捕捉同时发生的荧光动态数据。本次网络课堂将向大家详细介绍智能显微成像技术和FluoSync同时成像技术在细胞生物学研究中的前景和应用。

2022年07月18日 16:20

激光共聚焦成像是一项非常成熟的技术,随着光谱式检测方法成为共聚焦成像的主流,对于多色成像/拆分也愈发成熟,利用不同荧光染料的发射光谱的不同来进行多通道拆分能够满足大多数情况下的需求,但是由于存在一些发射光谱大幅重叠的荧光标记组合和一些自发荧光信号的存在,有时候利用荧光强度还是不能够很好的拆分多荧光标记。此时除了利用智能分析软件来进行基于荧光强度拆分的方法之外,还可以利用荧光寿命来进行成像。荧光寿命是荧光物质的固有属性,与染料浓度、激发光强度等因素无关,取决于染料内在性质以及所处的微环境,因此相比于荧光强度成像,荧光寿命成像会更加稳定,并能同步获取更多维度的数据信息。

2022年07月13日 16:36

MICA作为徕卡2022年全新发布的全场景显微成像分析平台,为活细胞,固定细胞组织等成像带来全新成像体验。MICA是集成彩色明场成像,IMC成像,Thunder高分辦成像以及超高分辨共聚焦成像等多种模式于一体的产品。MICA操作简单智能化,多种模态一键切换,采用先进的FluoSync技术进行低光毒性多色同时成像,其稳定的箱式成像系统助力活细胞长时间成像,井配有Al人工智能分析模块可对成像结果进行数据分析。本次报告将向大家详细介绍MICA的特点及其在细胞生物学、疾病诊断或药物筛选中的应用。

2022年07月13日 15:28

本期网络课堂将会涉及:

1.医疗器械行业手动检验产品质量面临的挑战

2.在操作员不同的情况下,如何进行可靠的检测

3.如何减少人员培训时间

4.如何高效生成可靠的检测网络课堂

5.确保符合21 CFR Part 11和GxP

6.互联互通,从检测中获取更多信息

2022年07月13日 11:48

本次网络课堂中,屈教授不仅向我们介绍了他所带领的研究团队一路走来所发展的STED技术(包括自适应光学STED、相图分析STED、数字增强STED、时空调制STED、频率调制STED等)及其应用,还和我们分享了他们团队荧光染料开发的成果及宝贵经验。将STED的成像技术提升和新型荧光染料“双剑合璧”后,屈教授的团队实现了STED空间分辨率提升、长时间活细胞成像、低损耗光功率成像等多项技术突破。屈教授坦言,他在99年刚到深圳大学时就接触到徕卡SP2共聚焦,至今使用过多款徕卡显微成像设备,并对徕卡显微镜的成像质量和硬件品质给予了很高的评价。

2022年07月12日 16:20

肿瘤复杂机制的研究与新疗法新药物的开发给肿瘤的显微成像技术提出了非常高的要求。研究对象涵盖从肿瘤细胞内的蛋白分子及信号通路、细胞间相互作用、肿瘤组织及微环境,到整体动物肿瘤的转移及肿瘤活性物质的运输。研究维度从静态到活体动态、从形态到功能成像等等。针对成像的难点和挑战,Leica给出了多种成熟的肿瘤成像方案。

2022年07月08日 09:40

发育生物学是一门研究生物体从精子、卵子发生, 形成受精卵, 然后生长发育直至衰老、死亡的过程及机理的一门学科。虽然共聚焦显微镜具有非常高的分辨率, 可以提供分析所需的空间信息, 但由于传统共聚焦显微镜单点扫描的特性, 采集速度太低,无法满足发育生物学对成像速度的要求。

人工智能的出现改变这了一切 - 使用人工智能增加图像信噪比及进行图像分割, 可以提高分析效率及数据准确性。本期网络课堂将介绍崭新的共聚焦成像和AI图像分析技术如何应用在发育生物学。

2022年07月07日 17:32

显微成像技术因其独特的技术优势,能够从微观纳米尺度解析精细结构,到宏观活体样本的行为学研究,跨尺度的开启神经生物学研究的新窗口,极大的推进神经科学在宏观和微观层面上更进一步。

双光子显微成像具有穿透深度大、光毒性小,散射低、检测效率高等优势,非常适合于做深度成像。Leica DIVE 光谱式检测的双光子显微系统,灵活可调检测窗口,很好的解决了双光子多色成像困难问题。此次网络课题将详细介绍DIVE双光子显微镜和AI图像分析软件如何应用于神经生物学的研究。

2022年07月07日 15:31

随着科学技术的发展,对于免疫学成像不断有新的研究技术被提出,面对免疫学成像日益增长的需求与层出不穷的挑战,徕卡又有哪些应对措施呢?在接下来的网络课堂中我们将逐一为您介绍。

2022年07月07日 15:03

细胞生物学作为二十一世纪生命科学重要的前沿学科之一,也是当今发展最快、最活跃、并与其他学科广泛交互动的一门学科。其研究难点在于细胞是非常精密且微小的单位,而观察设备存在空间、时间以及分辨率上的限制。想要充分扩展自己的研究成果并获得高质量的数据,选择合适的显微成像方法至关重要。本期课堂将为您介绍Leica多维度显微镜成像解决方案,帮助您选择与自己研究方向最佳匹配的成像设备与成像方法,使您的科学研究事半功倍、一骑绝尘。

2022年07月06日 17:41

神经系统从微观的神经元到神经集群到宏观的多神经环路结构与功能研究要求在微观层面上获得神经细胞二维乃至三维结构信息,以及功能大分子的定位信息。借助显微技术,我们可以进行跨尺度多模态的研究,从微观世界中窥见宏观,解开生命奥秘。神经系统的研究往往需要高分辨、深度成像和大断面可视化相结合。但是,对不同类型样本的图像处理所应用的设备不尽相同,这时候就需要研究人员为其选择一个最佳CP。对此,Leica配备了多款显微成像系统,适配于不同尺度模型的研究。

2022年06月23日 17:49

显微镜太难使用了?参数设置不理解?根本没办法拍出好的数据?预约Leica MICA系统吧!智能化设备,不需要你成为显微成像大师,就能获得专业级别的显微成像数据。还有平台老师介绍MICA,轻松获得高质量的显微成像数据。

2022年06月23日 17:10

FluoSync是一种使用单次曝光同时进行多通道荧光成像的精简方法。

传统的荧光成像方法通常按顺序对每个通道成像,以减少荧光团之间的串扰,或采用多光谱成像以及后续的线性拆分或基于相量的光谱拆分方法。这些方法都需要进行繁琐的手动调整或深入理解底层技术,或两者都需要。徕卡显微系统通过FluoSync引入了一种综合方法,在消除复杂性的同时保留了快速温和成像的优点。FluoSync会捕捉整个可见光光谱中的光子,与窄带宽滤光片相比,丢弃的信息更少;然后采用基于相量的混合拆分方法分离每个信号,实现可靠的通道分离。

强大的FluoSync,在捕捉显微图像信息上具有天生的优势:

1.可使用不同的荧光团组合更加自由地进行多通道成像:您不再受限于使用与显微镜的固定滤光镜组匹配的染料组合。

2.提升数据生成效率:能同时采集所有事件而无需管理多组滤光镜,从而加快了图像采集过程,提高了对多孔板等大型样本成像的效率,并且能够捕捉活体样本中的快速事件。

3.增强信心:使用混合光谱拆分方法意味着您无需再担心串扰。



2022年06月23日 17:05

FluoSync是一种使用单次曝光同时进行多通道荧光成像的精简方法。

传统的荧光成像方法通常按顺序对每个通道成像,以减少荧光团之间的串扰,或采用多光谱成像以及后续的线性拆分或基于相量的光谱拆分方法。这些方法都需要进行繁琐的手动调整或深入理解底层技术,或两者都需要。徕卡显微系统通过FluoSync引入了一种综合方法,在消除复杂性的同时保留了快速温和成像的优点。FluoSync会捕捉整个可见光光谱中的光子,与窄带宽滤光片相比,丢弃的信息更少;然后采用基于相量的混合拆分方法分离每个信号,实现可靠的通道分离。

强大的FluoSync,在捕捉显微图像信息上具有天生的优势:

1.可使用不同的荧光团组合更加自由地进行多通道成像:您不再受限于使用与显微镜的固定滤光镜组匹配的染料组合。

2.提升数据生成效率:能同时采集所有事件而无需管理多组滤光镜,从而加快了图像采集过程,提高了对多孔板等大型样本成像的效率,并且能够捕捉活体样本中的快速事件。

3.增强信心:使用混合光谱拆分方法意味着您无需再担心串扰。

wechat
欢迎扫码关注徕卡官方微信,更多显微技巧,行业资讯尽在掌握
close