微信扫码或点击右上角...分享

徕卡共聚焦课堂第2讲:激发篇

从滤光片转轮到声光可调滤光器(AOTF)

荧光的激发需要特定颜色的光:既要有效地激发探针(波长接近探针激发光谱的最大值),又要留下足够的空间收集发射光而不会进入检测器的光路中。在共聚焦显微镜中,通常使用多谱线激光器或激光电池作为激发光源,这需要设备既能够自由选择适合当前实验所用荧光团的激发谱线又能够控制该激发谱线的强度因为直接在光源处控制强度时,大多数激光器会出现噪音增强的现象。AOTF(声光可调滤光器)的引入简化了滤光过程,同时显着提高了实验的灵活性。AOTF对于耦合白激光源是唯一的明智选择。

滤光片转轮-早期的滤光工具

共聚焦显微镜中荧光的激发光源是激光或不同颜色的激光组合。出于技术原因共聚焦选择激光作为光源[2]。但是传统激光器通常只发射一条或几条单一波长的激光谱线(现代化解决方案是白光激光器[3])。然而,生物医学成像所使用的荧光染料的激发光谱从近紫外到近红外的都有。大多数情况下,为了同时检测几种不同荧光染料的发射情况,需要通过二向色镜结合一系列激光谱线来实现。在这种情况下,与在荧光照明中分离激发和发射光的“分光镜”相比,反射镜以反向模式使用。

由于通常激光器的低频噪声频带相对较窄,因此不建议直接通过激光功率控制强度。因此,需要一种设备来单独减弱激光强度。同样,如果关闭和打开光源次数过多,激光器寿命也会缩短。特别是气体激光器,在关闭后仍处于高温状态而未冷却时,不适合马上再次开启。

“激光电池”满足以上所有要求,它由一系列激光器(通常为3-5个)组成。所有激光器均配有光闸,光闸由机电驱动并由软件控制。所有激光器都需要一个用于减弱强度的伺服控制设备(一个带有一系列灰度滤片滤光片转轮或滑块)多谱线激光器还需要另一个滤光片转轮或滑块,它包含一系列边缘滤片和带通滤片,以便选择单谱线或组合谱线。

显然,整个设置可能会变得略微复杂低效,容易出现错位和漂移问题,可能在滤片选择切换过程中引发机械振动。若改变激发方案,成像的效率将非常低下,由于安装在滤光轮或滑块上的滤光片数量有限,该设备灵活度不高。

图1:传统的“激光电池”带有5个激光管、5个机械光闸、8个光束组合镜、5个衰减滤光片转轮和1个用于多参数共聚焦显微镜的选择激发谱线滤光片转轮。

声光可调滤光器-运行方式

简化机械设置并将灵活性提高几个数量级的一个重要步骤是采用声光可调滤光器(AOTF)。AOTF是一种可以控制所需颜色的光指向一个不同的方向的设备,而其余颜色的光直接通过 AOTF [1]。AOTF由晶体制成,通常是TeO2或SiO2或其他具有类似特性的化合物。晶体由机械转换器在几百兆赫范围内的机械波激发(声光可调滤光器的“声”是指机械波,尽管频率不符合人耳可听见声音的频率)。最重要的是所需光束偏转的方向是固定的,不会随光的颜色而改变。此外,指定方向的进光量也可以通过机械波的振幅进行控制。

激光电池发射出不同波长的激光谱线(准直)后,AOTF可以选择任意波长的谱线使之偏转至所需方向,并可控制该谱线的能量。AOTF可以真正同时选择多条谱线,谱线数量主要取决于采购设备具体情况。一个好的系统可同时提供8条谱线。

总而言之,AOTF用机械固定的单晶完全取代了上述所有快门、衰减滤片和谱线选择滤片,可以轻松实现任意谱线的组合;当激光电池同时提供8条谱线时,组合方式达到256种——这对于AOTF来说不是问题。另外:每条选定的谱线在强度上都是无级可控的。本质上,AOTF是一个“8-通道激光调光器”。

工程师可能会认为,AOTF将两种偏振模式导向不同的方向。这是完全正确的,并不损害概念。无论如何,激光都是偏振光,因此光将始终指向既定方向。垂直方向无激光,没有任何指向。

图2:在以传统激光电池为光源的共聚焦照明中,AOTF(右边的方框)替换了所有快门、衰减滤片和谱线选择滤片,任何进入AOTF的谱线都可以得到抑制、衰减或完全用于共聚焦显微镜。由激光器发射的任意谱线都可进行组合(组合数量大但有限)。

AOTF-额外的好处

图3:用不同激光谱线或不同强度的同一条激光谱线扫描感兴趣的区域。在激光谱线扫描期间,照明方式会根据预定义的模式在预设点发生变化。任何组合都是可能的,几乎所有图形都可以使用鼠标在预扫描的图像上绘制。当然,也可应用几何图案(矩形、圆形、椭圆形……)。“零线”也是一种模式,常用于保护细胞培养物中的背景细胞。

声光分