了解无标记化学显微成像

相干拉曼散射显微镜 STELLARIS 8 CRS

当您需要研究传统荧光显微成像方法无法成像的结构时,通过STELLARIS 8 CRS相干拉曼散射显微镜,您可以在工作流程中实现无标记化学成像,应对那些具有挑战性的研究问题。


徕卡显微系统官方客服收到您的信息后,将委派徕卡销售工程师或徕卡官方渠道授权经销商为您提供产品准确报价。

在STELLARIS 8 CRS中,您可以使用不同模块对各种样本进行高速高分辨率成像: 受激拉曼散射(SRS)、相干反斯托克斯拉曼散射 (CARS) 、二次谐波成像(SHG)、双光子荧光和可见光共聚焦荧光。


使用这些模块可以最大限度地利用从样本中获得的信息。


叠加图像显示了完好无损的未标记斑马鱼眼睛。 绿色: 脂质成分的受激拉曼散射 (SRS) 成像(波数为 2850 cm⁻¹)。 红色: 蛋白质组分的 SRS 图像(波数为 2935 cm⁻¹)。 蓝色:二次谐波信号,主要来自巩膜和角膜。 样本由Elena Remacha Motta和法国斯特拉斯堡遗传与分子细胞生物学研究所(IGBMC) Julien Vermot提供。

获得用传统方法无法实现的目标成像能力

尽管传统的荧光显微成像方法是非常成功的研究工具,但是可成像的目标类型和数量有限。 STELLARIS 8 CRS可帮助您克服以下限制:

  • 对目标事件和结构的化学键直接成像,而传统方法基本上无法做到这一点; 
  • 三维图像信息,即使在复杂的3D样本内也能观察到微小细节; 
  • 无论以视频码率成像还是长时间观察敏感样本,都尽可能使样本保持接近生理条件,在动力学研究中将扰乱性刺激降到最低限度。


对结构和事件进行成像,无需荧光染料

使用STELLARIS 8 CRS显微镜,用户可以利用结构和事件的化学特性对其进行成像和区分。 通过这种方式,可以获得传统方法无法获取的大量生化、代谢和药代动力学信息。 


样本内不同分子特有的内在振动状态不同,CRS利用这种振动差异形成图像中的对比度。 因此不需要对样本染色,从而消除了基于染料的成像方法的缺点,例如光漂白和染色导致的假象。


多色SRS成像展示了拉曼标记药理学化合物(黄色,SRS成像,波数为2230 cm⁻¹)在无标记细胞样本内的内源性脂质和蛋白质环境中的亚细胞分布。 样本由Dewpoint Therapeutics GmbH的Matthäus Mittasch博士提供。

内置的3D样本三维成像功能 

STELLARIS 8 CRS非常适合直接利用3D样本(例如组织、类器官或较小的整个模式生物)的化学特性进行亚细胞分辨率成像。 CRS的3D成像天然无需后期处理,这是因为这种方法结合了以下两个特点: 

  • CRS信号通过仅在激发激光的焦点体积内发生的非线性光学效应生成,提供真正的三维图像信息。

  • 用于激发CRS的近红外激光束以极小的扰动在整个样本中传播,因此在完整的3D样本内也能高效成像。


脑组织的三维成像: 200微米厚的小鼠脑切片的Z轴层扫图像,SRS成像同时显示有髓轴突(橙色)和来自Thy1-YFP标记神经元(青色)的双光子荧光。 样本由德国慕尼黑工业大学神经细胞生物学研究所Monika Leischner-Brill博士提供。

在尽可能接近生理条件的情况下对活体样本成像

CRS高效激发的分子键可以前所未有的速度实现化学特异性图像反差。 它能够以视频码率对活体样本成像。

 

STELLARIS 8 CRS搭载徕卡高速共振扫描头,可以对许多样本形态进行常规和高速成像。

 

除了速度外,温和成像对于在长时间观察中保护活体样本同样至关重要。 非染色方法与近红外激光相结合,可将光毒性和光损伤保持在最低水平


活体小肠类器官亚细胞动力学的无标记研究。 SRS信号的延时视频(波数为2940 cm−1)显示了内源性蛋白质和脂质,有助于深入了解此模型系统中的上皮细胞组织和脂滴动力学。 样本由荷兰根特大学Ruslan Dmitriev博士提供。
无标记脑组织中的β-淀粉样蛋白和相关病理性脂质沉积物成像。 光谱分析显示,与附近的健康大脑结构相比,膜脂质富集,胆固醇减少,这为研究脂质代谢与阿尔茨海默病病理之间的关系提供了新的机会。 样本由德国波恩神经退行性疾病研究中心Martin Fuhrmann博士和Andrea Baral博士提供。

探索形态化学和功能信息在成像实验中的潜力

为了解决生命科学和基础医学研究中极具挑战性的问题,通常必须最大限度地利用从样本中获得的信息。 这通常包括需要对非传统目标成像,例如脂质代谢的变化。


STELLARIS 8 CRS为您提供了一个完全集成的系统, 让您除了共聚焦荧光强度和寿命信息以外,还可以获取和关联各种生化与生理对比,从而充分利用实验样品。


获取样本生化组分 的相关信息

形态和生化信息的组合对于了解健康的生物功能以及由疾病引起的任何变化至关重要。


STELLARIS 8 CRS以前所未有的空间分辨率提供无标记的化学对比成像。 从亚细胞器到组织中的细胞群,以及会改变组织功能的病理结构,使用CRS可在许多空间尺度上探测生物功能。 


对未经处理的新鲜苹果片的内源性生化组分进行成像。 (A)SRS光谱层扫图像的代表性图像。 (B) (A)中所示感兴趣区域的SRS光谱。 黄色:最外层的果皮,包含蜡质相的长链饱和脂肪酸。 绿色、红色:内表皮层由短链不饱和脂肪酸构成。 蓝色、紫红色:多酚化合物。 青色:由多糖构成的细胞壁。 橙色:类胡萝卜色素。 (C) 8色光谱分解结果,显示不同的生化结构。
无标记SRS成像显示了多细胞皮肤癌球状体模型的核壳结构,展示了出乎意料的富脂细胞表型(分离的亮黄色细胞)的外观。 样本由德国曼海姆应用技术大学Julia Klicks博士和Rüdiger Rudolf教授提供。

展示与发育和疾病相关的 新维度

对细胞表型和代谢状态直接成像,对于了解健康和疾病状态下的生物过程至关重要。 样本处理可能会改变这些属性,因此无标记方法可能更加合适。


CRS成像提供了光谱功能,支持您在尽可能接近真实情况的条件下详细研究样本。 


将共聚焦荧光成像与 化学成像相结合

STELLARIS 8 CRS将多种成像方法紧密集成到共聚焦系统中,使您以无与伦比的方式观察到样本的多种生物维度。 这些方法可以通过生化、生理和分子对比来实现多模态光学成像。 


  • 受激拉曼散射(SRS)
  • 相干反斯托克斯拉曼散射(CARS)
  • 单光子或多光子荧光
  • 二次谐波成像(SHG)
  • 使用红外线(IR)、可见光(VIS)和紫外线(UV)激光器以同时或序列模式成像

 


将可见共聚焦荧光显微成像与通过SRS进行的多色化学成像相结合,并通过SHG增加物理对比度,对小鼠颅骨外植体中的成骨进行多模态光学成像。 在单个样本中可以看到成骨细胞的位置、细胞外胶原纤维的沉积和骨矿物质的形成。 此外,可以主要在分散于整个发育期骨结构中的孤立成骨细胞内观察到富含脂质的结构。 样本由德国德累斯顿MPI-CBG研究所的Jacqueline Tabler和Sebastian Bundschuh提供。
左上: 脑组织脂质的CARS显微图像,显示了富含脂质的白质和灰质区域。 右上: 平均光子到达时间的图像显示,富含脂质的白质的光子到达时间较短,灰质的光子到达时间较长。 该结果表明,瞬时CARS信号伴有寿命特定的双光子自发荧光信号。 下排: 基于寿命的瞬时CARS信号和自发荧光信号分离,平均到达时间为1.9纳秒。 右: 叠加图像。

了解振动和寿命成像带来的新可能性 

许多生物样本会呈现由内源性荧光团或特异荧光标记发射的荧光。 SRS信号不受荧光影响,但CARS信号可能会发生一定程度的荧光串扰。


STELLARIS平台中的TauSense工具可以帮助解决此问题。 通过使用基于荧光寿命的信息,您可以将瞬时CARS信号与荧光信号分离。 


通过固有可 量化数据提高工作效率

STELLARIS 8 CRS 提供了STELLARIS平台具备的所有多样性和易用性。 这一集成系统让您可以处理各种具有挑战性的样本,并帮助您最大限度地利用CRS成像的优势,包括从比率和光谱成像方法中获得固有可量化数据。


浸入水中的十二烷(一种完全饱和的碳氢化合物,青色)与亚油酸(一种多不饱和脂肪酸,紫红色)液滴的SRS图像和光谱。 1660 cm⁻¹至1440 cm⁻¹的强度比率可量化脂质不饱和度。

使用完全整合的系统轻松设置实验

ImageCompass用户界面提供一种既方便又直观的CRS显微成像方法,使专家和新手都可以完全控制实验的每个方面。


此外,ImageCompass集成了CRS激光控制功能,用户只需点击几下鼠标便可从单化学键成像转换为光谱成像或多模态成像。 


在直观的ImageCompass用户界面中点击几下即可获得CRS图像。

在大型复杂样本中轻松导航

LAS X Navigator是功能强大的工具,可让您从逐个图像的搜索方式快速转变为查看整个样本概况的模式。 CRS多位置实验与Navigator完全集成,因此您可以对大型样本执行完整的区块扫描,获得选择感兴趣区域所需的全部信息,以便随后作更详细的研究。


大面积样本的自动成像: 此处显示了整个小鼠脑切片的高分辨率区块扫描。 对高脂肪饮食和常规饮食中生长的小鼠的对应皮质组织区域进行比较,发现高脂肪饮食的小鼠出现富含脂质的病理性动脉斑块,而常规饮食的小鼠则没有。 样本由德国莱比锡大学的Judith Leyh和Ingo Bechmann教授提供。
SRS光谱成像提供关于脑结构化学组分的详细信息。 左: SRS图像显示了健康、富含脂质的白质结构(顶部)和β淀粉样蛋白(左下)周围的病理性脂质沉积物。 右: SRS光谱显示,与富含胆固醇的白质相比,病理性沉积物富含膜脂(鞘磷脂、卵磷脂)。


来自高光谱或比率成像的可量化信息

CRS灵感源自拉曼光谱学界开发的各种方法,支持比率和光谱成像,能够提供样本的可重现、可量化的化学组分信息。 这些基本的量化工具集成在LAS X软件中。


RELATED PRODUCTS
相关产品
STELLARIS 5 Cryo是一个共聚焦光学显微镜系统,可以帮助您针对感兴趣的区域进行定位以辅助冷冻电子断层扫描(CryoET)。STELLARIS 5 Cryo为您提供可靠的目标定位精准度, 同时还能提供您可以信赖的卓越性能,并提高实验效率。
徕卡显微系统采用独特的设计方法,使您可以在一个系统中进行共聚焦和光片成像, 实现柔和的单平面照明。 我们的数字光片系统(DLS)采用垂直设计,可以集成到 STELLARIS 5 和 STELLARIS 8 系统中,也可以作为两种系统的升级。 这样,您就可以受益于完整功能的共聚焦和易于使用的光片显微镜, 从而能够进行更多样化的研究。
我们的STED技术加入了STELLARIS平台,为您提供超越衍射极限的最快成像方法。在保护样品的同时,立即获得最先进的纳米技术结果,并获得惊人的图像质量和分辨率。STED超分辨率可让您同时研究多个动态事件,因此您可以研究细胞环境中的分子关系和机制。
共聚焦显微镜平台 STELLARIS 要发表前沿的研究成果,您需要看到更多细节,尝试新的应用,能够收集到可靠的数据。 我们的使命是成为您在显微镜领域的合作伙伴,助您在科学研究中不断进步。 我们重新打造了共聚焦显微镜,推出了STELLARIS共聚焦平台,让您臻于真像。
RELATED DATA
相关资料
2024年03月07日 10:04
LIGHTNING和TauSense如何提高聚焦离子束(FIB)加工的定位精度 LIGHTNING超分辨率检测和TauSense技术能够获得更好的低温荧光成像,促进了低温光电联用工作流程。 荧光显微镜图像能够为cryo-FIB加工提供定位支持,其质量决定了所制备薄片的结果。本文描述了LIGHTNING技术是如何显著提高图像质量,以及如何利用该技术基于荧光寿命的信息来辨别样品的不同结构。
2024年02月26日 10:49
洞察力:观察更多。想象一下,您能够观察到每个样本的更多细节,甚至能够捕获很微弱的信号,在整个光谱中收集更准确可靠的数据。 高潜力:探索更多。想象一下,您能够在实验中增加额外的荧光寿命信息维度,获得新发现。 生产力:完成更多。想象一下,通过更简单的设置和导航提高工作效率,只需点击几下即可获得复杂样本的图像。
2024年02月26日 10:36
超高分辨率 巅峰想象 STED和STELLARIS融为一体,为您提供出色的共聚焦成像以及独特的超分辨率功能,助您推动科学进一步发展。 洞察力 新一代白激光,经过优化的系统光路,快速的Power HyD检测器,再加上3条STED激光谱线,这样的独特组合可以以纳米级分辨率,在全光谱范围内同时研究多个事件和分子间相互作用。
2024年02月26日 10:20
STELLARIS 5和STELLARIS 8光片显微镜(DLS)将共聚焦系统和光片显微镜相结合--这种独特的组合旨在提高您的研究的多样性。徕卡显微系统的TwinFlect反光镜采用了独特的DLS垂直光路设计,可以在同一系统中将共聚焦和光片成像相结合,从而使您能根据实验需要轻松调整显微镜成像方法。
RELATED TECHNOLOGY
相关技术前沿
2024年01月10日 17:50
造血干细胞是我们身体中几乎所有血细胞的来源,它们存在于骨髓中独特的微环境里。骨髓中分布着丰富的外周神经。造血干细胞领域内之前的研究通过手术横断、化学药物消融等方法消融神经,探索了骨髓内外周神经对于造血干细胞的维持、迁移和再生等生命活动的潜在作用,但是由于不同的骨髓内外周神经消融手段导致的实验结果并不完全一致,所以目前对于骨髓内外周神经对造血干细胞的功能仍旧存在争议。
2023年06月09日 10:47
当人工智能被正确地整合到显微成像工作流程中,可以使研究人员以更高效的方式收集数据,并进行以前无法完成的实验。 用于STELLARIS共聚焦平台的全新稀有事件检测工作流程就是这样一种基于人工智能的工具。STELLARIS的数据采集和Aivia的人工智能图像分析的协同作用,能够帮助科研人员快速获得高质量的信息并减少工作量。
2022年10月26日 14:41
光学显微镜旨在放大肉眼不可见的物体。为此需要采用高品质光学器件来获得优秀的分辨率。但是,所有光学组件都会对光路中的光线带来负面的影响,最终导致像差。本文将重点介绍此过程中涉及的光学元件及其物理参数。在此基础上,本文对减少像差的方法原理进行了一次历史概述。结果表明,将显微镜看作一个整体系统有助于协调其各个组件并获得最佳微观结果。
2022年09月30日 09:44
婴幼儿大脑发育由先天基因(nature)和后天经验(nurture)的协同作用,其中后天接受的感觉刺激(包括视觉、听觉,触觉等)对促进大脑各区域之间神经突触连接的形成至关重要。视觉(光)作为人类最重要的感知能力,在出生后早期促进了多个大脑皮层的突触发育。然而,在发育早期视觉(光)是如何被感知、通过何种神经环路和分子机制促进了大脑发育、以及对婴幼儿成年后的认知学习能力的影响尚不明确。
wechat
欢迎扫码关注徕卡官方微信,更多显微技巧,行业资讯尽在掌握
close