徕卡DM3 XL正置显微镜 DM3 XL

在微电子和半导体行业中,检验、过程控制或缺陷和故障分析的速度至关重要。检测缺陷的速度越快,您做出响应的速度也就越快。

视场宽敞 30%

DM3 XL 检验系统凭借大视场帮助您的团队更快地识别缺陷,提高您的收益率。充分利用独特的宏观物镜,视场宽敞 30%。

徕卡显微系统官方客服收到您的信息后,将委派徕卡销售工程师或徕卡官方渠道授权经销商为您提供产品准确报价。

更多细节尽收眼底,工作更高效

看到更多细节意味着工作更高效。为快速扫描达到 6" 的大组件,DM3 XL 提供独特的宏观物镜。

利用 0.7x 放大倍率,它可以即刻采集 35.7 mm 的视场 – 比其他常规扫描物镜宽敞 30%。

在宏观物镜下,缺陷无所遁形:

  • 提高您的收益率
  • 可靠检测晶片边缘或中心显影不足的区域
  • 检测不均匀的径向膜厚度

适用于所有相衬观察方法的 LED

DM3 XL 针对所有相衬观察方法使用 LED 照明。LED 照明可提供恒定的色温,并在所有亮度等级下提供真彩色成像。

  • 在所有亮度等级下实现真彩色成像
  • 自由调节
  • 无需更换灯泡 – 无停机时间
  • 可复制的结果

由于 LED 使用寿命长,耗电量低,因此还具有巨大的成本节约潜力。

光学“高手”

DM3 XL 让您以实惠的价格享受到卓越的光学性能。

  • 采用斜射照明检验侧面、边缘或碎屑:以简单有效的方式从不同角度照亮样品,从而实现各种形貌的可视化。

  • 借助深暗场对比检测样品较低层中的微小划痕或小颗粒。

您将对明显提高的灵敏度和分辨率感到震惊。

请在徕卡光学中心探索徕卡物镜产品的更多信息。

不同样品 – 可变载物台插件

无论您想要检验的样品是哪种类型,尺寸如何,均有种类丰富的载物台插件供您选择:

  • 载物台尺寸:150 mm x 150 mm
  • 载物台插件:金属插件、晶片支座或掩模支座
  • 快速的粗略或精准载物台定位

工作舒适直观

彩色编码光圈辅助 (CCDA) 对分辨率、对比和景深的基本设置进行简化,有助于提升您的工作速度,并最大程度减少操作失误。

直观明了的功能帮助您的团队更快速地交付理想结果。 

  • 得益于可轻松操作的控件,用户可在切换对比度或照明时,双手继续操作显微镜,双眼专注于样品之上。
  • 右手可轻松操控光强控制器
  • 使用可变人体工学镜筒和调焦旋钮,根据不同身高调整显微镜
RELATED PRODUCTS
相关产品
在微电子和半导体行业中,检验、过程控制或缺陷和故障分析的速度至关重要。检测缺陷的速度越快,您做出响应的速度也就越快。 视场宽敞 30% DM3 XL 检验系统凭借大视场帮助您的团队更快地识别缺陷,提高您的收益率。充分利用独特的宏观物镜,视场宽敞 30%。
徕卡DM12000M全新的光学设计,可以提供宏观模式快速初检,以及倾斜紫外光路功能(OUV, 倾斜紫外观察模式) 不单提升了分辨率还提高了检查12英寸(300毫米)硅片的产能。 最新的 LED 照明技术 一体化设计并整合在显微镜上. 低热辐射和机身内一体化技术确保了最理想的机身外空气流动状态。低能耗的节电设计大大延长了使用寿命,符合绿色环保的理念。 一键式的操控设计使用户可以轻易地完成倍率转换和相关的照明和相衬效果。
徕卡 DM8000 M 提供了全新的光学设计,如理想的 宏观检查模式 或者倾斜紫外光 (OUV, 随检UV 选择) 不但提高了分辨能力,同时也增加了观察 8’’/200 毫米直径大样品 时的产量。
RELATED DATA
相关资料
2021年02月07日 15:27
专为电子半导体行业快速检测而设计 在微电子和半导体行业中,检验、过程控制或缺陷和故障分析的速度至关重要。检测缺陷的速度越快,您做出响应的速度也就越快。 视场宽敞 30% DM3 XL 检验系统凭借大视场帮助您的团队更快地识别缺陷,提高您的收益率。充分利用独特的宏观物镜,视场宽敞 30%。 更多细节尽收眼底,工作更高效 看到更多细节意味着工作更高效。为快速扫描达到 6" 的大组件,DM3 XL 提供独特的宏观物镜。 利用 0.7x 放大倍率,它可以即刻采集 35.7 mm 的视场 – 比其他常规扫描物镜宽敞 30%。 适用于所有相衬观察方法的 LED DM3 XL 针对所有相衬观察方法使用 LED 照明。LED 照明可提供恒定的色温,并在所有亮度等级下提供真彩色成像。 由于 LED 使用寿命长,耗电量低,因此还具有巨大的成本节约潜力。 不同样品 – 可变载物台插件 无论您想要检验的样品是哪种类型,尺寸如何,均有种类丰富的载物台插件供您选择。 工作舒适直观 彩色编码光圈辅助 (CCDA) 对分辨率、对比和景深的基本设置进行简化,有助于提升您的工作速度,并最大程度减少操作失误。
RELATED TECHNOLOGY
相关技术前沿
2022年10月26日 14:41
光学显微镜旨在放大肉眼不可见的物体。为此需要采用高品质光学器件来获得优秀的分辨率。但是,所有光学组件都会对光路中的光线带来负面的影响,最终导致像差。本文将重点介绍此过程中涉及的光学元件及其物理参数。在此基础上,本文对减少像差的方法原理进行了一次历史概述。结果表明,将显微镜看作一个整体系统有助于协调其各个组件并获得最佳微观结果。
2022年05月09日 15:51
荧光是George Gabriel Stokes于1852年首次报道的一种现象。他观察到萤石在紫外线照射后开始发光。荧光是光致发光的一种形式,是指一种材料被光照射后会发射出光子。发射光的波长比激发光更长。这种效应又称为斯托克斯位移。
2021年11月24日 10:46
工作中要做到佳,人们必须拥有健康的身体:这样可以在较长的时间内更加专注、更有动力和更高的效率。符合人体工程学设计的工作场所有利于身体健康,符合人体工程学的设计对工作结果有直接的影响,减少了患者住院时间并提高了工作效率。因此,人体工程学配件的支出被可能节省的费用和工作效率的提高所抵消。在决定购买人体工程学配件时,决策者需要的不仅仅是常识——他们更需要统计数据。来自奥地利Röthis的理疗医师John Ludescher提供了有关该主题的信息。
2021年11月12日 10:12
在试图区分显微镜下观察到的样本细节时,数值孔径(缩写为‘NA’)是一个重要考虑因素。NA是一个没有单位的数,与透镜收集的光角度有关。在计算NA(见下文)时还考虑了介质的折射率,通过将载玻片或细胞培养容器的折射率与浸没介质相匹配就可以分辨出样本的更多细节。光从一种介质传播到另一种介质时的行为方式也与NA有关(称为“折射”)。本文还介绍了折射的简要历史,以及这一概念如何成为实现高NA的限制因素。
wechat
欢迎扫码关注徕卡官方微信,更多显微技巧,行业资讯尽在掌握
close