徕卡 DM3000显微镜 Leica DM3000 & DM3000 LED 生物显微镜

徕卡 DM3000 荧光生物显微镜适用于病理学、细胞学与血液学研究,它具有电动物镜转盘、聚光顶镜、自动光线强度调节装置与可选脚踏开关。这种直观的显微镜改善了细胞学病理学研究的操作流程。

电动聚光镜:聚光镜数值孔径N.A.0.9,孔径光栏具有彩色标记,并且与物镜放大倍数的颜色标记相匹配,带有物镜倍数标注。电动聚光镜, 10倍以下的物镜,聚光镜顶镜自动弹出;10倍及以上的物镜,聚光镜顶镜自动弹入,以自动获得最佳的照明效果,显著提高工作效率。

电动聚光镜顶镜能够识别每次放大操作的正确位置。徕卡 DM3000 双目生物显微镜可按照每个物镜的要求自动调节光线强度,并可针对每次放大操作储存之前使用的光线值,由于采用独一无二的触发模式,它能在两种放大操作之间进行切换时,显著提高操作效率。


徕卡显微系统官方客服收到您的信息后,将委派徕卡销售工程师或徕卡官方渠道授权经销商为您提供产品准确报价。

独一无二的触发模式

自动 6 孔接物镜转盘切换物镜仅需半秒,用户可使用控制按钮或可选的脚踏开关单独选择物镜。此外,独一无二的触发模式确保在两种用户定义的物镜之间快速便捷地切换。

电动物镜转换器:6孔内倾式电动物镜转换器,高齐焦性、高同轴性,可任意在所有任何两个物镜之间切换,方便预览与观察。

可自由编程的控制按钮

物镜转换键:主机前端内置物镜快捷转换键,可自定义,与各物镜一一对应,以便一键转换到需要的物镜;主机自带双物镜互换快捷键,可自定义设定某两个物镜间快速转换。

所有控制按钮(包括可选的脚踏开关按钮)均可根据用户喜好进行自由编程。光线强度变换、物镜切换、在荧光模式下开/关透射光模式,这些功能都允许用户按自己的要求调节显微镜。


自动光线调节

用户可根据使用的物镜自动调节聚光顶镜的位置和光线强度,从而确保操作便捷简单。


各种对比技术

采用各种对比技术,例如适用于荧光成像的高性能荧光,确保为各种应用提供光源。


独特的可调高度的聚焦旋钮

作为一种模块式显微镜系统,用户可使用各种人体工学设备(如斜管和人体工学模块)配置 徕卡 DM3000 生物正置显微镜,以满足专门的身体条件需求。它装有已取得专利的可调高度的聚焦旋钮,而且允许用户根据姿势和手掌大小进行调节。

2-3档同轴粗/微调焦;具有载物台限位装置,有效防止压碎标本。

载物台需为陶瓷面材质,坚固耐刮、耐腐蚀,行程76mm x50 mm,载物台驱动手柄可用户自行左、右更换,使左、右手操作皆可。

宽视野三目镜筒,屈光度(由目镜调节)、瞳间距可调,支持视野数25 mm,可扩展双光路输出,同时连接2个成像装置。

“自动光线调节”这个专题下增加:双物镜互换快捷键,可自定义设定某两个物镜间快速转换。


DM3000显微镜3D演示模型

  • 3D模型文件较大,加载速度与您当前的网络环境相关,请耐心等待加载完成
  • 因生产批次和模块配置差异,模型和真机可能存在细节差异
  • 如需获得更加逼真的3D体验,可使用微信扫描下方二维码,关注“徕卡显微系统”官方微信,点击底部菜单徕卡学院>线上体验中心,即可进入徕卡虚拟体验中心小程序


RELATED PRODUCTS
相关产品
与传统激光显微切割系统不同,徕卡激光显微切割系统无需移动样品,而是通过移动激光、重力收集,大限度地避免样品污染,为您提供可即时分析的理想切割组织样品。 激光显微切割 (LMD,亦被称为激光捕获显微切割或LCM) 便于用户分离特定的单个细胞或整个组织区域。徕卡激光显微切割系统采用独特的激光设计和易用的动态软件,从整个组织区域到单个细胞,用户可以轻松分离目标区域(ROI)。 激光显微切割通常用于基因组学(DNA)、转录物组学(mRNA、miRNA)、蛋白质组学、代谢物组学,甚至下一代测序(NGS)。神经学、癌症研究、植物分析、法医学或气候研究人员均借助这种显微切割技术进行学科研究。此外,激光显微切割也是活细胞培养 (LCC) 的一款理想工具,可用于克隆、再培养、操作或下游分析。
徕卡 DM500 显微镜具有“即插即用”功能,对于教师和学生,都是学院和大学初级生命科学课程教学的一种方便有趣的理想工具。 适合学生的各种功能,如预聚焦、预居中的聚光器和EZTube™预置屈光度,这些功能可以避免错误调整,为实践操作教学提供更多时间。
徕卡DM750是理想的显微镜,适用于学院和大学高级生命科学课程和医学、兽医及牙科学校专业训练的各种需求。 学生喜爱的各种功能:如 EZStore™,方便搬运、便于提升,而圆边 EZGuide允许单手滑动装载,减少滑动破片,提供安全的课堂环境。
Leica DM1000 LED的独有长寿命LED照明,提供了近似于日光的明亮照明和恒定色温,且产热量低。 而且,LED还避免了更换灯泡的需求,节省了时间与成本。由于它耗电量低,因此节省了能源。Leica DM1000 LED适用于各种用户应用,为每个用户带来了好处。
RELATED DATA
相关资料
2024年02月22日 17:15
在更好的光照强度下观察材料组织。通用白光(4500K)LED照明装置与著名的高品质徕卡光学装置匹配,打造出理想的质量评估和检测工具。Leica DM2700 M代表了简单可靠的显微镜设计,改善您的工作流程,把精力集中在工作上。
2022年09月30日 14:18
DM2500 LED 生物显微镜 明亮光源:等效100w强度照明;明场、暗场、偏光、相差、微分干涉、荧光观察 便捷操作:载物台x/y控制可根据惯用手设置为左手或者右手控制。优化工作流程。 舒适使用:观察筒角度,调焦旋钮和x/y控制高度及扭矩可根据使用需要调整。
2022年09月30日 14:11
DM3000 生物显微镜 便捷操作:配备电动控制的物镜切换和聚光镜,位于调焦螺旋后侧的快速切换按键可自定义设置 舒适使用:具备自动光强调节功能,调焦旋钮、控制、观察筒可根据使用需要调整x/y
2022年09月30日 11:16
DM2500 生物显微镜 明亮光源:等效100w强度照明;明场、暗场、偏光、相差、微分干涉、荧光观察 便捷操作:载物台x/y控制可根据惯用手设置为左手或者右手控制。优化工作流程。 舒适使用:观察筒角度,调焦旋钮和x/y控制高度及扭矩可根据使用需要调整。
RELATED TECHNOLOGY
相关技术前沿
2022年10月26日 14:41
光学显微镜旨在放大肉眼不可见的物体。为此需要采用高品质光学器件来获得优秀的分辨率。但是,所有光学组件都会对光路中的光线带来负面的影响,最终导致像差。本文将重点介绍此过程中涉及的光学元件及其物理参数。在此基础上,本文对减少像差的方法原理进行了一次历史概述。结果表明,将显微镜看作一个整体系统有助于协调其各个组件并获得最佳微观结果。
2022年05月18日 17:20
本文中所示结果表明,相比明场,使用偏振光可以更清晰地分辨小鼠肺组织中的胶原蛋白纤维化和非纤维化区域。为更好地理解促使瘢痕组织形成的肺纤维化,正常情况下会研究组织中的纤维化区域。分别使用明场和偏振光对小鼠肺组织中的胶原蛋白纤维化病变区域进行成像。成像胶原蛋白时,使用一般的染色法和明场显微镜很难区分纤维化和非纤维化区域。本文中使用偏振光对肺组织进行成像,两个区域呈现出非常明显的颜色差异。
2021年12月07日 15:08
高端仪器之所以受到顶尖科学家们的青睐,不仅因为它们在日常使用中表现出的稳扎稳打,还因为其在捕捉关键性创新实验结果时带来的无限可能。今天,我们通过解读加拿大卡尔加里大学(University of Calgary)的徕卡多光子显微镜用户近期在《Science》杂志上发表的题为“Primordial GATA6 macrophages function as extravascular platelets in sterile injury”的研究论文[1],感受一下徕卡DIVE(Deep In Vivo Explorer)多光子显微镜在体成像的“速度与激情”。
2021年11月26日 15:04
生物标记物可用作特定疾病如癌症的指征标记。这样一来,肿瘤微环境就容易引起人们的警觉。但在肿瘤区域和非肿瘤区域以及肿瘤本身之间存在着明显的分子差异。这些情况只能通过分离这些区域的特定的、微小的部分来破译。
wechat
欢迎扫码关注徕卡官方微信,更多显微技巧,行业资讯尽在掌握
close