微信扫码或点击右上角...分享

利用徕卡THUNDER成像系统探索微生物肠道免疫机制

SARS-CoV-2冠状病毒引起的Covid-19影响了世界的方方面面。免疫和治疗方法等抗病毒方向的研究在2020年具有高优先级显微镜在这类研究中起着举足轻重的作用。了解受体结合、基因组释放、复制、组装和病毒出芽的基本原理及免疫应答,可以使用不同的方法和显微镜。鉴于显微镜在感染生物学中的重要作用,我们举例阐述不同的显微技术及其在这些研究领域中的应用。

 

研究背景

人类出生后胃肠道立刻被复杂的微生物群落定植(1000余种,且数量>100万亿),而这些肠道微生物群落影响宿主生理的多个方面,包括代谢、免疫反应、行为和昼夜节律等等。先前的研究认为肠道微生物群落主要是共生菌,共生菌可控制病原菌数量,而黏膜屏障免疫对于维持共生菌群和抵抗侵入性细菌感染至关重要。

微生物-肠-脑轴是将大脑和肠道功能整合的双向信息交流系统,并涉及神经、免疫和内分泌机制。除了神经内分泌系统和神经免疫系统之外,该轴还包括了中枢神经系统(CNS)、自主神经系统(ANS)的交感神经和副交感神经分支以及肠道神经系统(ENS)。从肠道到CNS的传入纤维(如大脑、扣带回、小脑扁桃体和扁桃体皮质)以及肠道平滑肌的效应纤维是沿着微生物-肠-脑轴进行双向信息交流的主要途径。

 


1 微生物--脑轴

 

肠道神经系统(ENS)遍布肠道组织的每个角落,将收集到的信息迅速地传递到自体或非自体类型的细胞,织就一个庞大又复杂的网络系统新涌现的多个研究报道发现ENS可以作为免疫系统的感应平台,但ENS与上皮细胞的互作机制知之甚少

 

2019年12月,Jarret等人在Cell发表了题为Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity的文章。借助单分子mRNA荧光原位杂交smFISH; THUNDER Imager 3D Live Cell),研究发现ENS神经元分泌IL-18作用于肠道上皮细胞中的杯状细胞,促进杯状细胞抗菌蛋白(AMP)的表达,在肠道免疫中起着重要作用。

2 ENS肠道上皮细胞互作机制

 

研究过程

鉴于大脑中神经元会分泌IL-18,而大量研究表明ENS可能在调节粘膜屏障免疫中发挥关键作用,因此研究人员大胆猜测肠道神经元也会分泌IL-18。接下来作者构建ENS特异性敲除IL-18小鼠和多种细胞类型特异性敲除IL-18R小鼠,并分别用鼠伤寒沙门氏菌(S.t)感染。之后作者通过共聚焦观察发现不携带ENS所产生的IL-18的小鼠则更容易受到感染。为了证实这一发现,研究人员使用了IL18 mRNA探针在小鼠中进行了单分子mRNA荧光原位杂交(smFISH),结果显示在IL-18-/-小鼠结肠中IL18 mRNA探针的信号丢失。

3 THUNDER验证结果与Confocal观察结果一致

A)用于分析IL-18+神经元的Confocal正交视图。IL-18红色Tubb3(绿色)。
B)通过smFISH观察野生型IL18-/-小鼠结肠中的IL18 mRNA(白色)和DAPI(蓝色)。

 

同时通过smFISH检测小鼠肠组织中IL18与Tubb3的表达,观察到IL18 mRNA探针与神经元特异性Tubb3 mRNA探针共定位

图4 smFISH检测小鼠肠组织中IL18(红色)、Tubb3(白色)表达;DAPI(蓝色)表示细胞核

 

总之,这些数据表明肠神经元是结肠中IL-18的新产生者。研究还结合单细胞转录组技术来探究ENS来源IL-18的功能以及作用方式

 

实验方法

1. 处死小鼠,移出结肠并用冷PBS冲洗。纵向剖开结肠组织滤纸。

2. 4%多聚甲醛PBS溶液固定3小时,后置于30%蔗糖4%PFA的PBS溶液中4过夜。

3. 包埋,制成7mm厚切片,并用于smFISH染色。

4. 设计探针库与Cy5(IL-18)TMR(Tubb3)结合,将切片与smFISH探针杂交。

5. 封片前去除ENS的自发荧光信号。

6. Leica THUNDER Imager 3D Live Cell上进行smFISH成像,使用自带的THUNDER Computational Clearing设置

 

看到这里大家可能会有一个疑问:为什么不用共聚焦显微镜smFISH而是选择徕卡THUNDER

对,为什么?小编也提出过这个问题,但是下面这段话做出了很好地解释。


smFISH的实验过程中探针会发出大量光子,而共聚焦则会显著限制光子收集的数量,为了最大限度回收这些光子,更建议使用宽场技术。

 

徕卡THUNDER凭借其高分辨、快速、大视野的特点,可大限度回收实验中smFISH探针发出的大量光子,减少光损耗,更适用于smFISH成像。不仅可以获得清晰锐利的图像,实验结果更便于统计分析且重复性高,是您进行组织大视野快扫的不二之选。

参考文献

1、 Jarret et al., 2020, Cell 180, 50–63

2、 Brain Res. 2018 August 15; 1693(Pt B): 128–133

3、 Jung, Y. J.,et al., 2017, Sci Rep 7(1):17360

4、 Zhang, H., et al. 2018, Synth Syst Biotechnol 3(2): 113-120

提交后,我们将每月自动将您关注领域的行业快讯更新链接通过短信、邮件发送给你
利用徕卡THUNDER成像系统探索微生物肠道免疫机制 立即观看
RELATED PRODUCTS
相关产品
如果每位科研人员都可以实现空间信息的获取? 迈入多模态显微成像分析时代 认识 Mica世界上第一款多模态显微成像分析中枢
使用超多标组织成像分析整体解决方案加深您对组织微环境的理解 癌症十分复杂。 免疫疗法虽然很有发展前景,但目前有效性仍只有 30%。 研究人员需要更深入地了解正常组织和病变组织的细胞结构,以开发更好的治疗方法,更准确地预测疾病进展。 多标或者超多标成像是清晰地观察、识别和量化重要生物标志物的最新技术。 研究层面从回答“是否为癌症?”的问题到能够根据细胞类型、生物标志物特点和个体特征将肿瘤分层。
全景组织显微成像系统可对通常用于神经系统科学和组织学研究中的 3D 组织切片进行实时荧光成像。为厚组织摄取丰富详尽且无离焦模糊的清晰图像。 得益于徕卡的创新技术 Computational Clearing,即使是组织深处的细微结构也能解析。对脑切片中的神经元轴突和树突等详细形态结构进行成像。即使是厚组织切片,也能实现高画质,并同时具备宽场显微镜声名远扬的速度、荧光效率和易用性。
活细胞培养显微成像系统 采用徕卡创新的 Computational Clearing 技术, 能够实时有效去除非焦平面的模糊信息,使 3D 样品在基于摄像头的荧光显微镜上依然能高质量地采图。系统的高度灵敏度可确保低光毒性和低淬灭,全面优化条件以实现更高的图像质量。 活细胞培养显微成像系统可为您提供适用于先进 3D 细胞培养试验的解决方案,无论您想要研究的是干细胞、球状细胞团或是类器官。
RELATED ONLINE WEBINARS
网络课堂
2023年08月18日 15:32

为帮助相关领域的用户了解生物成像前沿技术及应用进展,仪器信息网将于2023年04月18日举办“生物成像技术在肿瘤诊断与治疗中的应用”主题网络研讨会,本届网络研讨会为期1天,徕卡受邀带来精彩报告《肿瘤诊断与治疗中的免疫荧光显微成像》。

本次课程简介:癌症由于其高发性和高死亡率是当今医学领域研究的重中之重。随着科学技术的不断发展,从原来的病理诊断,通过HE染色,显微成像进行肿瘤诊断,逐步发展到荧光成像。荧光素的标记,让我们可以通过区分开更多的生物标志物,来进行更加精准的诊断,研究个性化的免疫疗法。


2023年08月18日 15:22

近年来,显微成像技术朝着高速度、高分辨、多维度、多模式等方向不断发展与创新。日新月异的人工智能技术更是给显微成像方法带来了新的突破!


【中国细胞生物学学会2023年会•苏州】徕卡带您“云”逛展台,展示MICA全场景成像分析平台,光电联用等显微成像新技术在生命科学研究中的应用。分析测试百科网进行全程直播 期待您的参会~


2022年07月12日 16:20

肿瘤复杂机制的研究与新疗法新药物的开发给肿瘤的显微成像技术提出了非常高的要求。研究对象涵盖从肿瘤细胞内的蛋白分子及信号通路、细胞间相互作用、肿瘤组织及微环境,到整体动物肿瘤的转移及肿瘤活性物质的运输。研究维度从静态到活体动态、从形态到功能成像等等。针对成像的难点和挑战,Leica给出了多种成熟的肿瘤成像方案。

wechat
欢迎扫码关注徕卡官方微信,更多显微技巧,行业资讯尽在掌握
close